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ABSTRACT

A variational scheme for the analysis of scalar variables is developed and compared to two-pass and three-
pass versions of the Barnes analysis scheme. The variational scheme, appropriate for diagnostic studies, is similar
to a previously developed variational method in that scalar gradient ‘‘observations’’—derived directly from the
scalar observations—are used in addition to the scalar observations themselves. The current scheme is different
in that the cost function does not require analyses of the scalar field and its gradient; it simply requires scalar
and gradient observations at their native locations. For the evaluation, randomly selected model gridpoint data
are chosen to serve as pseudo-observations for the analysis schemes. By choosing appropriate model gridpoint
data to serve as pseudo-observations, artificial data networks can be generated so as to mimic the spatial
characteristics of real observational networks.

Results indicate that the proposed variational scheme is superior to both two-pass and three-pass Barnes
schemes, increasingly so as the observations become more irregularly spaced. This is true even when the gradient
information is not allowed to affect the variational analyses. When the observations are relatively sparse and
irregularly distributed, further improvements in the variational analyses occur when the gradient information is
properly included within the analysis scheme.

1. Introduction

Procedures for mapping observations that are irreg-
ularly distributed in space and/or time to a regular grid—
a process called objective analysis—have existed and
evolved for many decades. Historically, the general pur-
poses for employing objective analysis methods are two-
fold: to aid in the diagnostic studies of various weather
phenomena and to provide the initial conditions for nu-
merical weather forecasts. Successful diagnostic studies
usually depend on accurate estimations of spatial de-
rivatives of various quantities (e.g., wind, temperature,
humidity, pressure). These spatial derivatives are com-
puted easily from finite-differencing methods which, in
turn, require gridded analyses. The use of traditional
objective analysis schemes (e.g., Cressman 1959;
Barnes 1964, 1973) for providing initial conditions to
numerical models has all but disappeared in favor of
using more sophisticated schemes that account for the

* Additional affiliation: NOAA/National Severe Storms Labora-
tory, Norman, Oklahoma.

Corresponding author address: Phillip L. Spencer, National Severe
Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.
E-mail: phillip.spencer@noaa.gov

statistical properties of the background field and obser-
vations, as well as the relationships between variables
that are described by various dynamic and/or continuity
equations. Optimal interpolation (OI) and variational
methods are examples of such modern, sophisticated
analysis schemes. Although of little or no use for pre-
sent-day numerical forecasting, the use of simple anal-
ysis schemes for diagnostic studies continues to this day.
Lorenc (1986), Caracena (1987), Parsons and Dudhia
(1997), and Spencer et al. (2003, hereafter SSF03) argue
that for this purpose, sometimes it is preferable to use
a simple analysis scheme rather than modern, sophis-
ticated analysis techniques. The reader is referred to
these papers for further discussion and examples.

One of the early ‘‘simple’’ analysis schemes involved
surface fitting, whereby observations were fit to second-
or third-order polynomials (Panofsky 1949; Gilchrist
and Cressman 1954). These surface-fitting methods pro-
vided reasonable analyses in data-dense regions, but
performed less admirably elsewhere. Another simple
scheme, the method of successive corrections, was pro-
posed by Bergthórsson and Döös (1955) and made pop-
ular by Cressman (1959) and Barnes (1964, 1973),
whose schemes remain popular today. The basic idea
behind this method is that a background field (also
known as a first-guess field) can be successively ad-
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justed based on the observations until the analysis ap-
propriately converges to the observations. The back-
ground field may be provided by climatology, persis-
tence, or a short-term model forecast.1 The weight func-
tions that determine an observation’s influence upon the
value of a particular grid point are empirical and dis-
tance dependent. Thus, the Cressman and Barnes
schemes represent distance-dependent weighted-aver-
aging objective analysis schemes.

When analysis methods such as these are used to
create gridded fields, finite-differencing schemes typi-
cally are used to estimate the spatial derivatives. Grid-
ded fields, however, are not a prerequisite for estimating
derivatives. In fact, first-order spatial derivatives can be
estimated directly from the observations themselves,
rendering unnecessary the creation of gridded fields for
finite-differencing purposes (Bellamy 1949; Endlich and
Clark 1963; Ceselski and Sapp 1975; Schaefer and Dos-
well 1979; Zamora et al. 1987; Doswell and Caracena
1988). Therefore, when gridded fields of derivative
quantities are desired, analysts have two options: 1) ap-
ply a finite-differencing scheme to the gridded obser-
vations, or 2) apply an analysis scheme to the irregularly
distributed derivative estimates. Schaefer and Doswell
(1979), Doswell and Caracena (1988), and Spencer and
Doswell (2001) explored these two options and con-
cluded that the latter provides superior results.

In diagnostic studies, gridded fields of both obser-
vations and spatial derivatives typically are combined
in various ways (e.g., advection terms) to evaluate terms
in diagnostic and prognostic equations. When gridded
spatial derivatives obtained by analyzing irregularly dis-
tributed derivative estimates are combined with analyses
of observations in order to compute terms in various
equations, an inconsistency arises—analyses of the ob-
servations are not mutually consistent with their re-
spective gradient analyses. This is because the gradient
analyses are not derived from the gridded observations.
SSF03 resolved this by developing a simple variational
analysis scheme that combines the analysis of a scalar
variable with the analysis of its gradient to produce
mutually consistent scalar and gradient analyses. SSF03
found that improved analyses are possible when gradient
information is included properly within the variational
scheme.

In this work, we attempt to improve upon the work
of SSF03 by developing a variational scheme that does
not require analyses of the observations and its gradient.
The scheme that we propose, however, is very similar
to that of SSF03, except that our scheme requires only
the observations themselves and gradient estimates at
points between observations. We compare analyses from
our scheme to those from three others (a popular version
of the Barnes two-pass, a Barnes three-pass, and

1 Strictly speaking, a background field obtained from prior infor-
mation is not required. An analysis of the observations themselves
may serve as a background field.

SSF03’s variational scheme) to evaluate the merits of
the proposed variational scheme.

In section 2, we describe our method for generating
pseudo-observations that serve as input for the analysis
schemes. Section 3 contains descriptions of the various
analysis schemes that are to be compared. In section 4,
we present the results of our comparisons. Finally, sec-
tion 5 contains a summary of the results and some brief
discussion.

2. Generating pseudo-observations and artificial
observing networks

Many previous studies of objective analysis tech-
niques incorporate analytic observations that consist of
various combinations of sine and cosine functions, often
creating checkerboard patterns in the scalar field when
two-dimensional analyses are performed (e.g., Askelson
et al. 2000; Trapp and Doswell 2000; Spencer and Dos-
well 2001). Generating observations by sampling such
a field is useful for objective analysis studies because
the true field and its spatial derivatives are known at all
points in the domain, including the grid points, where
the merits of the analysis scheme are evaluated. Simple
analytic fields consisting of checkerboard patterns, how-
ever, do not replicate the complex atmospheric structure
often seen in meteorological observations. For this rea-
son, we have chosen to define our analytic observations
in a different manner.

The observations used in this study are 850-mb
heights provided by random sampling of grid points
from the Rapid Update Cycle Version 2 model (RUC-
2; Benjamin et al. 1998). Treating model data as ob-
servations introduces atmospheric structure that is more
realistic than the simplistic structure of checkerboard
patterns. The RUC-2 analysis grid consists of 151 3
113 grid points in the horizontal, covering the contig-
uous United States and surrounding areas. Only a small
percentage of these 17 063 grid points are treated as
observations. The following procedure is used to de-
termine which of the 850-mb-height gridpoint data from
a given RUC-2 analysis are to be treated as observations
for the objective analysis schemes:

1) Determine the desired percentage of model grid
points to use as observations. If we wish to create
an artificial observing network whose observation
density (number of observations per unit area) equals
that of the U.S. rawinsonde network, for example,
then we need to solve the following equation for
PERCENT, the percentage of RUC-2 grid points to
serve as observations:

72 (PERCENT/100%)(151 3 113)
5 ,

2 28 151 824 km 23 440 000 km
(1)

where 72 is the number of rawinsonde observations
within the contiguous United States, 8 151 824 km2
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FIG. 1. (a) Artificial network of evenly distributed observing sites created by choosing PERCENT 5 1.21; (b) same as (a), except for
PERCENT 5 0.605; (c) artificial network of irregularly distributed observing sites (denoted by x’s) created by choosing SC 5 0.31 and
PERCENT 5 1.21 and nearest model grid points (denoted by o’s); (d) same as (c), except for SC 5 0.62 and PERCENT 5 0.605; (e)
triangular tessellation of the nearest model grid points shown in (c); (f ) triangular tessellation of the nearest model grid points shown in (d).
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FIG. 2. Rmses of B3P analyses as a function of the shape parameter
c2,3 for the (a) 850-mb heights, (b) gradient of the 850-mb heights,
and (c) Laplacian of the 850-mb heights. The solid curves are for
SC 5 0.31 and PERCENT 5 1.21, and the dashed curves are for SC
5 0.62 and PERCENT 5 0.605. The gradient rmsves have been
multiplied by 106, and the Laplacian rmses have been multiplied by
1011. These curves are derived by averaging the analysis results from
the 15 sets of observations.

is the approximate area of the contiguous United
States, 151 3 113 is the number of RUC-2 grid
points in the horizontal, and 23 440 000 km2 is the
approximate area of the RUC-2 domain. Solving (1),
we find that PERCENT 5 1.21%. Therefore, by
choosing 0.0121 3 (151 3 113) ø 206 RUC-2 grid
points to serve as observations, we have mimicked
the observation density of the rawinsonde network.

2) Create a rectangular array of artificial, evenly dis-
tributed observing sites across the analysis domain,
whose number approximately equals the desired
number of observations found in step 1. To find the

exact number of grid points to use as observations
and to determine the dimensions of the rectangular
array, two equations are solved simultaneously:

I 3 J 5 (151 3 113)(PERCENT/100%), (2a)

I/J 5 151/113, (2b)

where (I, J) represents the dimension of the rect-
angular array of artificial, evenly distributed observ-
ing sites, 151 3 113 is the horizontal dimension of
the RUC-2 domain, and PERCENT is the value
found in step 1. Equation (2a) simply states that the
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FIG. 3. Rmses of the variational analyses as a function of the
logarithm of the weight factor g for the (a) 850-mb heights, (b)
gradient of the 850-mb heights, and (c) Laplacian of the 850-mb
heights. The solid curves are for SC 5 0.31 and PERCENT 5 1.21
and the dashed curves are for SC 5 0.62 and PERCENT 5 0.605.
Depicted along the left (right) ordinate axes are average rmses for
B2P, B3P, and SSF03 analyses associated with the sparse (dense)
observing networks. The value of the rmse-minimizing weight factor
is used for the SSF03 analyses. The gradient rmsves have been mul-
tiplied by 106, and the Laplacian rmses have been multiplied by 1011.
The curves are derived by averaging the analysis results from the 15
sets of observations.

number of artificial observing sites is the desired
percentage of the total number of RUC-2 grid points.
Equation (2b) states that the aspect ratio of the rect-
angular array of evenly distributed observing sites
should be equivalent to that of the model grid. Solv-
ing (2), we find

0.5PERCENT
I 5 151 , (3a)1 2100

0.5PERCENT
J 5 113 . (3b)1 2100

Using the value of PERCENT found in step 1 (i.e.,

PERCENT 5 1.21), we find (I, J) 5 (17, 12), after
rounding to the nearest integer. A 17 3 12 rectan-
gular array of artificial, evenly distributed observing
sites is presented in Fig. 1a. This procedure allows
us to create an artificial observing network whose
observation density mimics that of the rawinsonde
network and whose stations are evenly distributed
within the analysis domain.

If we wish to create an artificial observing network
whose observation density is one-half that of the
rawinsonde network, then we choose PERCENT 5
0.605. From Eq. (3), we find (I, J) 5 (12, 9). A 12
3 9 rectangular array of artificial, evenly distributed
observing sites is presented in Fig. 1b.
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3) Displace the artificial, evenly distributed observing
sites to create an irregularly distributed observing
network. The method described by Doswell and
Lasher-Trapp (1997) is used for displacing the evenly
distributed observing sites to create a network of
irregularly distributed observations. This procedure
allows us to mimic the degree of spatial irregularity
associated with actual observing networks. To create
an observing network that is irregularly distributed,
each of the artificial, evenly distributed stations of
the rectangular array created in step 2 are randomly
displaced in the horizontal by a distance that is no
greater than some fraction of D, the average data
spacing of the evenly distributed sites. This fraction
is referred to as the scatter constant (SC). Using SC
5 0.0 results in an observing network that remains
regularly distributed, whereas using SC 5 1.0 gen-
erates an observing network that is highly irregularly
distributed.2 If an observing site is displaced far
enough that it falls outside any boundary of the do-
main, then it is merely reflected inside the opposite
boundary that same distance in order to keep it with-
in the domain. SSF03 suggest that by using SC 5
0.31, an artificial observing network is created whose
degree of spatial irregularity matches that of the ra-
winsonde network. An artificial network created by
choosing SC 5 0.31 and PERCENT 5 1.21 is pre-
sented in Fig. 1c. Note that the spatial characteristics
(data density and spatial irregularity) of this artificial
observing network resemble those of the rawinsonde
network, as intended.3 By doubling the spatial irreg-
ularity (SC 5 0.62) and halving the observation den-
sity (PERCENT 5 0.605), the network shown in Fig.
1d is created. This network is characterized by larger
data-void regions than is the network shown in Fig.
1c.

4) For each displaced artificial observing site, choose
the nearest model gridpoint datum to serve as an
observation. In this study, observations are created
by choosing the 850-mb height at the grid point near-
est each displaced observing site. Five different data
distributions, each with the same value of SC and
PERCENT, are created from each of three RUC-2
analyses (0000 UTC 11 April, 1200 UTC 11 April,
and 0000 UTC 12 April 2001)4 by initializing the

2 Stations within 75 km of each other (a subjectively chosen value)
are considered clustered, and the observations associated with these
stations are averaged according to the algorithm described by SSF03.
Data clustering may occur for moderate to large values of SC.

3 A completely different distribution of stations, with the same
spatial characteristics, may be created simply by altering the value
of the initial seed that is used to generate the sequence of random
numbers that determine how each station within the evenly distrib-
uted, artificial observing network is displaced.

4 These dates were chosen because a very intense low pressure
system developed and moved across the central United States during
this period. Also, we note that before any RUC-2 gridpoint data are
used as observations, we apply the cowbell filter of Barnes et al.
(1996) to the RUC-2 height analyses in order to remove noise.

random number generator with five different seeds
(see footnote 3). Therefore, 15 sets of observations
are created for each desired combination of SC and
PERCENT. An example of observation locations for
SC 5 0.31 and PERCENT 5 1.21 is presented in
Fig. 1c, where the circles represent the nearest model
grid points that provide the observations. An ex-
ample of observation locations for SC 5 0.62 and
PERCENT 5 0.605 is presented in Fig. 1d.

3. Objective analysis schemes

In this section, we describe the three analysis schemes
that form the basis of our comparisons. Two of the anal-
ysis schemes are of the Barnes type—one is a two-pass
and the other is a three-pass successive correction
scheme. The third scheme is a modification of the var-
iational scheme described by SSF03. For each of the
schemes, the analysis grid is the entire 151 3 113 hor-
izontal RUC-2 grid at the 850-mb level. The nominal
grid spacing (Dx) is 40 km.

a. Barnes two-pass scheme

The Barnes (1964, 1973) analysis scheme for objec-
tive analysis applies the following analysis equation to
the height observations:

N

w (Z 2 Z )O k k bk
k51Z 5 Z 1 , (4)g b N

wO k
k51

where Zg is the gridded height field, Zb is the background
(first guess) estimate, N is the number of observations,
Zk is the height observation at the kth data point, Zbk is
the height estimate at the kth data point obtained by
bilinear interpolation of the background field,5 and wk

is the weight assigned to the kth observation. The
weighting function used in (4) is exponential, and we
write it as

2 22R /(c D)ikw 5 e ,k (5)

where Rk is the distance between the kth observation
and the grid point in question, D is the average data
spacing of the evenly distributed observations, and ci is
the shape constant used during the ith pass of the anal-
ysis. The choices of ci are made by the analyst and
determine the response characteristics of the analysis
(i.e., the smoothness of the analysis). Important factors
to consider when choosing ci should include the accu-
racy and representativeness of the observations,6 data

5 In our applications of the Barnes scheme (both two- and three-
pass), the background field (Zb) is zero during the first pass. The
background field for subsequent passes is simply the analysis from
the previous pass.

6 For this study, the observations are assumed to be free of error.
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FIG. 4. Sample analyses of the 1200 UTC 11 Apr 2001 850-mb heights from the (a) RUC-2 (‘‘truth’’), (b) B2P scheme, (c) B3P scheme,
and (d) variational scheme. Pseudo-observations were generated by choosing SC 5 0.31 and PERCENT 5 1.21 (see Fig. 1c). The contour
interval for all plots is 15 m. Rmses (m) appear in the upper-right corners of (b)–(d).

distribution characteristics (Doswell and Lasher-Trapp
1997), and the desired scales to resolve (Barnes 1973).

A two-pass version of the Barnes analysis scheme
(hereafter B2P) has been popular for many years for
diagnostic studies. In fact, the general meteorological
data assimilation, analysis, and display software (GEM-
PAK) software (Koch et al. 1983), in use today at many
universities and research centers, often is used to apply
a B2P scheme to meteorological observations. Koch et
al. (1983) describe a two-pass scheme in which the first-
pass amplitude response at the Nyquist wavelength (L
5 2D) is 0.0064, and the final response at the Nyquist
wavelength is e21. Using our notation, this may be ac-
complished by choosing c1 5 1.43 and c2 5 0.64.7 We
have chosen to include this scheme in our comparisons

7 These numbers are based on a one-dimensional application of the
analysis scheme. The shape constants required for accomplishing
these response characteristics for a two-dimensional application (c1

5 1.01, c2 5 0.45) are quite low and not recommended.

because of the B2P’s historical popularity among ana-
lysts.

b. Barnes three-pass scheme

The Barnes three-pass scheme (hereafter B3P) is iden-
tical to B2P, except that the B3P performs two correction
passes through the data rather than the one correction
pass that B2P performs. Also, B3P uses values of c1

that differ from those used by B2P. Achtemeier (1987)
showed that improvements in the analysis, particularly
for the short but resolvable wavelengths, are possible if
a three-pass scheme is used instead of the more popular
two-pass scheme. Achtemeier (1989) suggests using a
relatively large value of c1 (first-pass shape constant) so
that the first-pass analysis retains significant amplitude
only at the well-resolved wavelengths. Following
SSF03, we choose c1 5 1.75. This smooth first-pass
analysis virtually eliminates the Nyquist wave (L 5 2D)
and retains less than 70% of the amplitude of the largest
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FIG. 5. Same as Fig. 4, except for the magnitude of the gradient of the 850-mb heights. The contour interval for all plots is 3 3 1025.
The rmsves located in the upper-right corner of (b)–(d) have been multiplied by 106.

waves that are considered marginally well sampled
(L 5 12D) as defined by Doswell and Caracena (1988).

The shape constants for the correction passes are cho-
sen such that c2 5 c3 [ c2,3. To determine the optimal
value for this parameter, different values of c2,3, ranging
from 0.5 to 2.0, are used by the B3P scheme to analyze
the 15 sets of observations created for each combination
of SC and PERCENT. The value of c2,3 producing the
lowest average analysis error [as defined by the root-
mean-square error (rmse); section 4a] is used for the
comparisons.

Results from the B3P analyses for various values of
c2,3 are presented in Fig. 2. Two important results are
evident: 1) rmses for a network of relatively sparse,
moderately irregularly spaced observations are higher
than for a dense network of fairly regularly spaced ob-
servations, and 2) rmse-minimizing values of c2,3 fall
within a narrow range of values near 1.0. The rmse-
minimizing value of c2,3 for the 850-mb heights and its
gradient is 0.75 (Figs. 2a and 2b), whereas the rmse-
minimizing value of c2,3 for the Laplacian is 1.0 (Fig.

2c). For lesser values of c2,3, the overfitting of data
causes poor derivative information to be forced into the
gap between sample points (Barnes 1994; Spencer and
Doswell 2001), whereas for larger values of c2,3, the
analyses tend to be overly damped. For the remainder
of this work, we choose c2,3 5 0.75. For our purposes,
the B3P scheme with c1 5 1.75 and c2,3 5 0.75 is
therefore considered the best possible B3P scheme.

c. Variational scheme

The proposed variational scheme is similar in form
to that proposed by SSF03. Specifically, we propose
minimizing the following two-dimensional cost
function J:

2o]Z ]Zy2J 5 [H(Z ) 2 Z ] 1 g H 2EE y o5 1 2[ ]]x ]x

2o]Z ]Zy1 g H 2 dx dy, (6)1 2 6[ ]]y ]y
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FIG. 6. Same as Fig. 4, except for the Laplacian of the 850-mb heights. The contour interval for all plots is 3 3 10210 m21. The rmses
located in the upper-right corner of (b)–(d) (in units of m21) have been multiplied by 1011.

where Zy represents the desired gridded height field, Zo

are the height observations, ]Z 8/]x and ]Z 8/]y are the
components of the height gradient ‘‘observations,’’8 H
is a bilinear interpolation operator that interpolates anal-
ysis variables to observation locations, and g is a user-
selectable weight factor that determines the relative
strength of the weak constraint. The difference between
(6) and the cost function proposed by SSF03 is that their
cost function requires explicit interpolation of the scalar
observations and its derivatives from irregularly dis-
tributed observational points to grid points before the
variational analysis is performed, whereas (6) requires
actual observations themselves (including gradient ob-
servations) and a built-in forward interpolation step (H
operator) that interpolates the gridded scalar variable
and its gradient to their respective observational loca-
tions, where J is computed. As we will demonstrate,

8 These are not true observations, per se. They are dependent ‘‘ob-
servations’’ derived directly from the height observations themselves.
Although the gradient ‘‘observations’’ are not true observations, they
are treated as such.

this difference in the formulation of the cost function
will lead to nontrivial improvements in the analysis of
the heights and its derivatives since an analysis routine
is not required to determine the terms in (6).

The goal of the variational analysis method is to find
the state of Zy for which the cost function J is minimized.
At the minimum, the derivative of J with respect to Zy

vanishes and the optimal estimate of Zy satisfies

T
]J ]H(Z )y5 2 [H(Z ) 2 Z ]y o[ ]]Z ]Zy y

T
o]H(]Z /]x) ]Z ]Zy y1 2g H 21 2[ ] [ ]]Z ]x ]xy

T
o]H(]Z /]y) ]Z ]Zy y1 2g H 2 5 0. (7)1 2[ ] [ ]]Z ]y ]yy

The observations of the gradient are estimated using
the ‘‘triangle method’’ described in SSF03, which is
based on the work of Endlich and Clark (1963). The
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first step in calculating the gradient of the observations
(]Z 8/]x, ]Z 8/]y) is to generate a triangular tesselation
of the station locations. We use the Delauney triangu-
lation method described by Ripley (1981) to create a
set of nonoverlapping triangles from the observation
network. To avoid potential problems with near-colin-
earity of the vertices, triangles containing minimum an-
gles #158 are removed from further consideration. Ex-
amples of triangular tesselations are presented in Figs.
1e and 1f.

SSF03 have shown that if the height varies linearly
along each leg of a triangle, then the components of its
gradient, calculated for each triangle and assumed valid
at the triangle centroid, are given by

o]Z DZ DZ Dx 2 DZ Dx Dy1 2 1 1 2 15 1 , (8a)1 21 2]x Dx Dy Dx 2 Dy Dx Dx1 1 2 2 1 1

o]Z DZ Dx 2 DZ Dx2 1 1 25 , (8b)
]y Dy Dx 2 Dy Dx2 1 1 2

where Zi is the height observation at the ith station of
a triangle (i # 3), (xi, yi) is the location of the ith station,
DZi 5 Zi 2 Zc, Dxi 5 xi 2 xc, and Dyi 5 yi 2 yc. Here,
Zc 5 (Z1 1 Z2 1 Z3)/3 is the height estimate at a triangle
centroid located at (xc, yc). Therefore, in Eq. (6),
]Z 8/]x and ]Z 8/]y represent gradient ‘‘observations’’ at
triangle centroids, whereas Zo represents actual height
observations at triangle vertices.

A recursive filter is applied to the analysis in each
direction before we calculate the cost function (6). This
filter is an effective means for spreading the influence
of each observation to nearby grid points, thus ensuring
a reasonably smooth analysis. Following the work of
Purser and McQuigg (1982), Lorenc (1992), and Hay-
den and Purser (1995), we define a one-dimensional
recursive filter as follows:

Y 5 aY 1 (1 2 a)X for i 5 1, . . . , n,i i21 i

Z 5 aZ 1 (1 2 a)Y for i 5 n, . . . , 1, (9)i i11 i

where Xi is the initial value at grid point i, Yi is the
value after filtering for i 5 1 to n, Zi is the initial value
after one pass of the filter in each direction, and a is
the filter coefficient given by the following formulation
(Lorenc 1992):

2 2a 5 1 1 E 2 ÏE(E 1 2), E 5 NDx /L , (10)

where L is the horizontal correlation scale, Dx is the
grid spacing, and N is the number of filter passes to be
applied. In this work, we choose L to be equivalent to
the data spacing D (;520 km for the sparse networks
and ;360 km for the dense networks) and choose N 5
2. Equation (9) is a first-order recursive filter, applied
in both directions to ensure zero phase change. Multi-
pass filters (N . 1) are developed by repeated appli-
cations of (9). A two-dimensional filter was constructed
by applying this one-dimensional filter successively in
each coordinate direction. It can be shown that such

multidimensional filters, when applied with several
passes, can accurately model isotropic Gaussian error
correlations (Purser et al. 2003; Gao et al. 2004).

The procedure for solving the variational problem is
as follows:

1) Choose a first guess for Zy, usually zero or a back-
ground field obtained from a numerical model.

2) Apply the two-dimensional recursive filter to the
guess field and use the forward operator H to inter-
polate Zy to triangle vertices and ]Zy /]x, ]Zy /]y to
triangle centroids.

3) Calculate the cost function J using the data at ob-
servation locations (triangle vertices and triangle
centroids).

4) Calculate the gradient of the cost function at each
grid point [Eq. (7)] using the adjoint technique (e.g.,
Talagrand and Courtier 1987; Courtier et al. 1998).

5) Use a quasi-Newton minimization algorithm (Liu
and Nocedal 1989) to obtain updated values of the
analysis variable at each grid point as follows:

(n) (n21)Z 5 Z 1 s · f (]J/]Z ),y y y (11)

where n is the iteration number, s is the optimal step
size obtained by the ‘‘line search’’ process in optimal
control theory (Gill et al. 1981), and f (]J/]Zy) is the
optimal descent direction obtained by combining the
gradients from several previous iterations.

6) Check whether the optimal solution for Zy has been
found. This is done either by (a) computing the value
of J to determine if it is less than a prescribed tol-
erance or (b) determining if a specified maximum
number of iterations has been reached. If either cri-
terion is satisifed, then stop iterating. Otherwise, re-
peat steps 2 through 6 using the updated field of Zy

as the new guess.

4. Results

a. Measure of analysis error

The rmse between each height analysis (Za) and the
corresponding model field (Z m ; representing the
‘‘truth’’) is calculated according to

0.52 (Z 2 Z )O a m 
i, j rmse 5 , (12) N 

where N is the number of grid points. The error cal-
culations are performed over the interior 75% of the
analysis grid (N 5 9804) to prevent boundary errors
from contaminating the statistic.

Barnes (1994) suggests that the analysis standard is
not how closely the analysis replicates the observations,
but how accurately the analysis reconstructs the scalar
field and its derivatives. For this reason, we compute
analysis errors for both the height gradient and the La-
placian as well. For the height gradient, the root-mean-
square vector error (rmsve) is computed from
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FIG. 7. Same as Fig. 4, except SC 5 0.62 and PERCENT 5 0.605 (see Fig. 1d).

rmsve
0.52 2{[(Z ) 2 (Z ) ] 1 [(Z ) 2 (Z ) ] }O a x m x a y m y

i, j
5 ,7 8N

(13)

where (Za)x, (Za)y represent the gridded height gradient
components computed from the height analysis Za, and
(Zm)x, (Zm)y represent the gridded height gradient com-
ponents computed from the corresponding model field
Zm.9 For the Laplacian, rmses are given by (12), except
that Za is replaced by ¹2Za, and Zm is replaced by ¹2Zm.

b. Choosing the weight factor g for the variational
scheme

The variational formulation [Eq. (6)] contains a weak
constraint whose strength is determined by the user-

9 Fourth-order centered finite differencing for estimating spatial
derivatives is used wherever enough grid points are available. Near
the boundaries, second-order centered or one-way finite-differencing
schemes are used to estimate derivatives.

defined weight factor g. If the analyst wishes that the
height observations alone determine the analysis, then
a small value of g is required. On the other hand, if the
analyst wants the height gradient observations alone to
determine the analysis, then a large value of g is needed.
Using a value of g somewhere between these two ex-
tremes dictates that both the height observations them-
selves and the gradient information play important roles
in the analysis. To choose the value of g that produces
the best analyses for the data under consideration, con-
sider Fig. 3, which plots rmses as a function of the
weight factor g for both sparse, moderately irregularly
spaced observations (dashed curves), and for relatively
dense, fairly regularly spaced observations (solid
curves). Depicted along the left (right) ordinate axis are
rmses for B2P, B3P, and SSF0310 analyses associated
with the sparse (dense) observations.

Several points are noted from Fig. 3. First, as with the
B3P scheme, we find that the variational scheme produces

10 The SSF03 variational scheme requires analyses of the heights
and its gradient. In this work, these are provided by the B3P analyses.



2988 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 8. Same as Fig. 7, except for the magnitude of the gradient of the 850-mb heights. The contour interval for all plots is 3 3 1025.
The rmsves located in the upper-right corner of each plot have been multiplied by 106.

better analyses when the observations are dense and fairly
regularly spaced versus when the observations are sparse
and somewhat irregularly spaced. This is, of course, no
surprise. Second, for both types of data networks under
consideration, the use of the height observations alone
(small g) produces much better analyses than when gra-
dient-only observations are used (large g). Clearly, this
too is no surprise. Third, for the dense, fairly regularly
spaced observational networks, using height gradient ob-
servations in addition to the height observations them-
selves provides no better analyses than if the height ob-
servations alone were used. This is seen by noting that
there is no value of g that provides rmses any lower than
the rmses associated with the smallest value of g on the
plots (i.e., g 5 10 m2).11 Therefore, it appears that for
these types of observational networks, the gradient ob-
servations provide no additional useful information to
that which is already available from the height obser-

11 Using the small value of g 5 10 m2 is essentially the same as
ignoring the gradient information within the variational scheme.

vations themselves. For the sparse, moderately irregularly
spaced observations, however, the use of an appropriate
value of g does, in fact, provide additional useful infor-
mation. For example, when g 5 109 m2, improvements
in the rmses over analyses that use only height obser-
vations are 5.6% for the heights (Fig. 3a), 3.8% for the
gradient of the heights (Fig. 3b), and 1.9% for the La-
placian of the heights (Fig. 3c). Finally, Fig. 3 indicates
that even if the gradient observations are not used, the
variational method provides analyses that are superior to
those provided by B2P, B3P, and SSF03’s variational
scheme. This is true for both types of data networks under
consideration. For the remainder of this work, g is held
constant at 109 m2.

c. Sample analyses

Sample analyses of the 850-mb heights, magnitude
of the height gradient, and Laplacian of the heights from
each of three analysis methods for the data distributions
shown in Figs. 1e and 1f are presented in Figs. 4–6 and
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FIG. 9. Same as Fig. 7, except for the Laplacian of the 850-mb heights. The contour interval for all plots is 3 3 10210 m21. The rmses
located in the upper-right corner of each plot (in units of m21) have been multiplied by 1011.

7–9, respectively. For all analyses, the rmses (shown in
the upper-right corner of each plot) from the B2P
scheme exceed those from the B3P scheme which, in
turn, exceed those from the variational scheme. Clearly,
the variational method is better able to capture the am-
plitude of the cyclone than are the B2P and B3P schemes
(Figs. 4 and 7). For the dense network of observations,
the height minimum within the cyclone from the vari-
ational method is more than 16 m deeper than that of
the B2P scheme and over 9 m deeper than the B3P
cyclone (Fig. 4). When the observations are more sparse
and irregularly spaced, the differences are 28 and 22.6
m, respectively (Fig. 7).

Visual differences in the patterns of the analyses be-
come even more evident when spatial derivatives are
taken (Figs. 5–6 and 8–9). Although differences in the
height gradient analyses are obvious (Figs. 5 and 8),
differences are especially visually noteworthy for the
Laplacian analyses (Figs. 6 and 9). As with the height
analyses, differences in the gradient and Laplacian anal-
yses become more pronounced as the observations be-
come fewer and more irregularly spaced.

d. Sensitivity to the spatial irregularity of the
observations

We have thus far considered two types of observa-
tional networks, one a network of relatively dense ob-
servations (PERCENT 5 1.21) whose data distribution
has been characterized as fairly regular (SC 5 0.31)12

and the other a network of sparse observations (PER-
CENT 5 0.605) whose data distribution has been char-
acterized as somewhat irregular (SC 5 0.62). The ef-
fects of a variable scatter constant have been isolated
by varying SC while holding PERCENT constant. The
results for two different values of PERCENT (1.21 and
0.605) are presented in Fig. 10. For all values of SC
considered, the B2P scheme provides the poorest anal-
yses and the variational method provides the best anal-
yses. The slopes of the curves suggest that the B2P and
B3P schemes are more sensitive to the spatial irregu-
larity of the observations than is the variational method.

12 Recall that these values of SC and PERCENT allow us to mimic
the spatial characteristics of the U.S. rawinsonde network.
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FIG. 10. Rmses of the B2P (short-dashed curves), B3P (solid curves), and variational (long-dashed curves)
analyses as a function of the scatter constant. Errors for (a) the 850-mb heights, (c) its gradient, and (e) its
Laplacian for PERCENT 5 1.21. (b), (d), (f ) Errors of the same quantities for PERCENT 5 0.605. The
gradient rmsves have been multiplied by 106, and the Laplacian rmses have been multiplied by 1011. These
curves are derived by averaging the analysis results from the 15 sets of observations.
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FIG. 11. Rmses of the B2P (short-dashed curves), B3P (solid curves), and variational (long-dashed curves)
analyses as a function of PERCENT. Errors for (a) the 850-mb heights, (c) its gradient, and (e) its Laplacian
for SC 5 0.31. (b), (d), (f ) Errors of the same quantities for SC 5 0.62. The gradient rmsves have been
multiplied by 106, and the Laplacian rmses have been multiplied by 1011. These curves are derived by
averaging the analysis results from the 15 sets of observations. The letters R, W, and P along the abscissa
in (a) represent the values of PERCENT needed to mimic the data densities of the rawinsonde, WSR-88D,
and profiler networks, respectively.
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In other words, as the observations become more irreg-
ularly distributed, the improvements of the variational
analyses over the B2P and B3P analyses increase. For
example, when PERCENT 5 0.605, the rmse of the
heights for the variational method is 3.1 m lower than
the B2P rmse and 1.8 m lower than the B3P rmse when
the data are uniformly distributed (SC 5 0.0; Fig. 10b).
However, when the observations are highly irregularly
spaced (SC 5 1.0), the rmse differences are 4.7 m.

e. Sensitivity to the number of observations

We now consider the sensitivity of the analysis meth-
ods to the data density by varying the number of ob-
servations while holding the scatter constant fixed. The
results for two different values of SC (0.31 and 0.62)
are presented in Fig. 11. For the values of PERCENT
considered, the B2P scheme generally provides the
poorest analyses and the variational method provides
the best analyses. When very few observations are used
(i.e., when PERCENT is very low), the analysis schemes
provide essentially equivalently poor analyses. On the
other hand, as the number of observations gets very
large, the rmses generally tend to converge toward
equivalently low values. The largest rmse differences
between the analyses lie between these two extremes.
These intermediate values of PERCENT characterize
many of our current observational networks. For ex-
ample, we have already described how using a value of
PERCENT 5 1.21 and SC 5 0.31 creates an obser-
vational network that mimics the rawinsonde network.
Using the results of SSF03 and the procedure described
in section 2 for finding PERCENT, we find that the
spatial characteristics of the 32-station wind profiler net-
work may be mimicked by selecting PERCENT 5 2.43
and SC 5 0.25 and that the spatial characteristics of
the Weather Surveillance Radar-1988 Doppler (WSR-
88D) network may be mimicked by selecting PERCENT
5 2.38 and SC 5 0.35. These values of PERCENT for
the rawinsonde (R), wind profiler (P), and WSR-88D
(W) networks are plotted along the abscissa of Fig. 11a.
The point of this is to demonstrate that nontrivial dif-
ferences in the analyses from the three schemes occur
for data distributions that resemble those of current ob-
servational networks. Therefore, when data from real
observational networks are to be analyzed, the choice
of an analysis scheme becomes an important issue.

5. Summary and discussion

Comparisons of a new variational technique with tra-
ditionally popular Barnes techniques for the analysis of
scalar variables has been performed. The variational for-
mulation is very similar to that proposed by SSF03, the
difference being that our cost function does not require
analyses of the scalar observations and its gradient; the
cost function proposed herein simply requires the scalar
observations themselves and estimates of the gradient

at points between observations (namely, triangle cen-
troids). Another important difference between our work
and that of SSF03 is that we have used pseudo-obser-
vations that mimic real atmospheric structure rather than
appealing to simple, analytically generated checker-
board patterns for the creation of observations. We have
done this by randomly picking model gridpoint data to
serve as observations. By specifying the percentage of
model grid points to serve as observations (through the
variable PERCENT) and the degree of irregularity in
the spatial distribution of the observations (through the
variable SC), we are able to create artificial data net-
works whose spatial characteristics mimic those of ac-
tual observing networks. For example, by choosing
PERCENT 5 1.21 and SC 5 0.31, we were able to
create an artificial observing network over the entire
RUC-2 domain whose spatial characteristics resemble
those of the rawinsonde network. By halving PERCENT
and doubling SC, we created an artificial network with
one-half the number of observations at twice the spatial
irregularity as the rawinsonde network.

Our results suggest that for both types of observa-
tional networks considered, the proposed variational
scheme produces analyses that are clearly superior to
those of the popular Barnes two-pass, ‘‘best’’ Barnes
three-pass, and SSF03’s variational schemes, even when
the gradient information is not allowed to influence the
analysis (by setting the weight factor g to a very small
value). We find that for a network characterized by rel-
atively dense observations, incorporating the gradient
information within the variational scheme did not im-
prove the analysis over that which is available by using
only the scalar observations themselves. Evidently, the
observations were dense and/or regularly spaced enough
so that no benefit was derived by including the gradient
information. On the other hand, for a network charac-
terized by relatively sparse observations, including the
gradient information does, in fact, improve the analyses
if an appropriate value for the weight factor g is se-
lected. In this work, we found that by choosing g 5
109 m2, we were able to reduce the 850-mb-height rmse
by an average of 5.6%, the gradient rmsve by 3.8%,
and the Laplacian rmse by 1.9% when compared to
analyses created without the use of the gradient infor-
mation.

We also found that for the data densities considered,
the variational scheme produces analyses that are su-
perior to those of the B2P and B3P schemes for all
values of the scatter constant that were considered. In
other words, the variational scheme performs better
whether the data are regularly distributed, highly irreg-
ularly distributed, or somewhere in between. In addition,
we found that the variational scheme is less sensitive
to variations in the irregularity of the spatial distribution
of the observations than are the B2P and B3P schemes.
Finally, we discovered that the variational scheme out-
performs the B2P and B3P schemes for observation
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densities that characterize several operational observing
networks.

We find it noteworthy that improvements in the var-
iational analyses occur for the sparse data networks and
not for the dense data networks when gradient infor-
mation is allowed to affect the analysis. This is inter-
esting because for a nonlinear distribution of the scalar
variable, an increased data spacing implies an increase
in the degree of violation of the linearity assumption
that is invoked to estimate the scalar gradient. Therefore,
as the observational data spacing increases, we expect
the gradient estimates to worsen. Evidently, despite the
degradation of the gradient estimates as the data spacing
increases, the variational scheme still is able to use these
estimates to improve upon observation-only analyses,
provided that an appropriate choice for the weight fac-
tory g is made. Chien and Smith (1973) have used non-
linear terms in the Taylor series expansion to estimate
kinematic quantities from the wind field. They conclude
that nonlinear variations may be significant at times and
suggest that when the second-order terms of the Taylor
series expansion are included, superior results may be
achieved. We leave this as an area of future research as
it pertains to our variational scheme.

For sparse data networks, we found that by choosing
g 5 109 m2, the average errors of the 850-mb-height
analyses from the variational method were minimized.
When the 15 sets of analyses are considered individu-
ally, the error-minimizing value of g is almost exclu-
sively in the range 5 3 108 m2 # g # 5 3 109 m2.13

This consistency is important because for larger values
of g, there is a rapid rise in the rmses (Fig. 3). As the
value of g increases beyond about 5 3 109 m2, the
influence of the derivative observations apparently is
too strong and the quality of the analyses rapidly wors-
ens.

The proposed variational scheme is intended for di-
agnostic studies only. As presented, the scheme does
not account for observational errors, nor does it include
any type of balance constraint. Of course, both of these
aspects of data analysis are important when the analysis
acts as the initial condition for a numerical model. In
the future, we wish to test the concepts developed here
to investigate the circumstances (if any) for which model
forecasts can be improved by modifying current three-
dimensional variational data assimilation (3DVAR)
schemes to include the type of gradient observations
discussed herein.
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